A Set of Novel Features for Writer Identification

نویسندگان

  • Caroline Hertel
  • Horst Bunke
چکیده

A system for writer identification is described in this paper. It first segments a given page of handwritten text into individual lines and then extracts a set of features from each line. These features are subsequently used in a k-nearest-neighbor classifier that compares the feature vector extracted from a given input text to a number of prototype vectors coming from writers with known identity. The proposed method has been tested on a database holding pages of handwritten text produced by 50 writers. On this database a recognition rate of about 90% has been achieved using a single line of handwritten text as input. The recognition rate is increased to almost 100% if a whole page of text is provided to the system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Offline Language-free Writer Identification based on Speeded-up Robust Features

This article proposes offline language-free writer identification based on speeded-up robust features (SURF), goes through training, enrollment, and identification stages. In all stages, an isotropic Box filter is first used to segment the handwritten text image into word regions (WRs). Then, the SURF descriptors (SUDs) of word region and the corresponding scales and orientations (SOs) are extr...

متن کامل

Multiple Graphometric Features for Writer Identification as part of Forensic Handwriting Analysis

This paper describes an approach to writer identification based on graphometric features. These features are used by Forensic Document Examiners (FDE) which realize their analysis observing and extracting from the questioned documents a set of important individualizing primitives. Thus, in this work we present a framework for offline writer identification which combine multiples graphometry fea...

متن کامل

Online Text-Independent Writer Identification Based on Stroke's Probability Distribution Function

This paper introduces a novel method for online writer identification. Traditional methods make use of the distribution of directions in handwritten traces. The novelty of this paper comes from 1)We propose a text-independent writer identification that uses handwriting stroke’s probability distribution function (SPDF) as writer features; 2)We extract four dynamic features to characterize writer...

متن کامل

Writer identification by means of loop and lead-in features

Writer identification is an important issue in forensic investigations. In this paper, we propose a novel method for identifying a writer by means of features of loops and lead-in strokes of produced letters. Using a k-nearestneighbor classifier, we were able to yield a correct identification performance of 98% on a database of 41 writers. These results are promising and have great potential fo...

متن کامل

Oriented Local Binary Patterns for Writer Identification

In this paper we present an oriented texture feature set and apply it to the problem of offline writer identification. Our feature set is based on local binary patterns (LBP) which were broadly used for face recognition in the past. These features are inherently texture features. Thus, we approach the writer identification problem as an oriented texture recognition task and obtain remarkable re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003